Bull. Chem. Soc. Ethiop. 2007, 21(1), 111-116. Printed in Ethiopia ISSN 1011-3924 © 2007 Chemical Society of Ethiopia

SOLVENT EFFECT ON "N NMR SHIELDING OF GLYCINE, SERINE, LEUCINE, AND THREONINE: COMPARISON BETWEEN CHEMICAL SHIFTS AND ENERGY VERSUS DELECTRIC CONSTANT

M. Monailemi^{1*}, M. Hechmat^{a,b}, H. Ashaei², R. Ahmadi² and K. Zaze^{a,c}

*Science and Research Branch, Islamic Azad University, P.O. Box 14155-775, Tehran, Iran *Islamshahr Branch, Islamic Azad University Tehran, Iran Shahid Beheshi University Tehran, Evin, Iran

(Received November 23, 2005; revised May 19, 2006)

ABSTRACT. The polarizable continuum model (PCM) is employed to describe the system in the centenced phase. The performance of DPT and PCM in discribing high order nonlinear mixed excitors and magnitude first in nonlinear passes are described. In this paper we consider the effect of the performance of the performance

KEY WORDS: Solvent effect, "N NMR shielding, Solvent-induced shielding, Polarizable continuum model Amino acids

INTRODUCTION

For the past half century, quantum chemistry has made significant progress in predicting properties of gas phase processes. The proceeding efforts recently have been training found solution chemistry. Some progress has been made in developing predictive models for equilibrium and spectroscopic properties of molecules in solution. The advantage of approaches with explicit solvent is that they provide detailed salvation structure enabling one to elucidate specific roles of solvent in reaction mechanism.

Because most of the systems studied experimentally are in solution the formulation of satisfactory theoretical models for solvated systems has been the object of continuously increasing interest. The polarizable continuum model (PCM) and continues set of gauge transformations (CSGT) method are used to calculate the nitrogen atom NNR sidelding of amino acids in a wild range of solvents encompassing a broad spectrum of dielectric constant, e. Direct and indirects object effects on shielding are also accludated 111.

It has been shown that the observed solven-induced sitebiling variation is more strongly related to the intensity of the solvent-recoils field after that on the change of molecular geometry induced by the solvent. PSCM has proved seelf in describing the effects of the solvent on severe characteristics of the smokent is solvent. All PSC declarations in this report have on severe characteristics of the smokent in solvents. All PSC declarations is this report have perturbation of the solvent on the electric wavef function of the solute held at fixed generary indirect effects are set to the relaxation of the solvent on the solvent on the solvent of the solvent o

^{*}Corresponding author. E-mail: m_monajjemi@yahoo.com

spontaneous mutation [4, 5]. This tautomerization is highly sensitive to environmental effects such as solvent polarity or transition to the gas phase. The solvent dependence of tautomeric equilibria has also been the subject of many experimental studies. Solvents with large dielectric constants favor the more out tautomers.

Ab into exclusion of moties magnetic shielding has become an indispensable sid in the investigation of motiestal structure, and sourch assignment of MNR spectar of compounds. The solvation effects is taken into account via the self-consistent reaction field (SCRF) method. The solutes is placed into a crisply within the solvent. SCRF approaches differ in low they define the cavity and the reaction field. Proportion measurement in low-pressure gases and those deterred from measurements in the flaged phase differ as molecular interactions pursuit with an interaction melecular placed in a spherical cavity and surrounded by a linear, knonegoneous, polarizable delectoris medium was employed for the description of the condensed phase. The system (unsully indicated as the solute) is described as a quantum mechanical charge distribution within a volume, the so-called solute earlier, another condensed phase. The system (unsully indicated as the solute) is described as a quantum mechanical charge distribution within a volume, the so-called solute earlier, another shape of the solute and the environment for the solventy as a continuum deficience. The solute polarizes the distribution within the continual contraction of the solute polarizes that distribution within the contraction of the solute polarizes that distribution within the contraction of the solute polarizes that distribution within the contraction of the solute polarizes that distribution within the contraction of the solute polarizes that distribution within the solute polarizes that distribution within the solute and the solute and the solute polarizes that distribution within the solute polarizes that t

BLI/PIDFT cas perform in the calculation of the magnetizability tensor with respect to other more expensive and complete as initial approaches, not as complete active space selfconsistent field [7]. This is an extremely satisfactory result considering the numerous approximation, e.g., the relatively initial besit set, the injuriciple encophisticated tentment of electron correlation, the adjector of vibrabilists and constrainting that the context of the contraction of the contraction of the contraction of the contracting straining from me extragolation on side to zero gas desirably in the experiment.

Solvent car also change the reaction mechanism as seen in the letter-imid [8] cycloaddition in which the two step mechanism is preferred in solution while the concerted nechanism was predicted for the gas phase. In general the combined QM/MM approach [9-12] in conjunction with molecular dynamics or Monte Carlo free-energy simulations would be the best way to provide accurate and detailed picture of reactions in solution.

The FCM model has several weaknesses. In particular, it does not provide any information on the solvent structure. In addition the size and skape of casity have no rejornes definitions. However, there are also several important advantages. First, one can solve a designed level of quantum mechanical methors through the size of a limit method and feating level of the size of th

EXPEDIMENTAL

The ab initio molecular orbital calculations were carried out with the GAUSSLAN 98 [3] program. Conserving optimizations in the gap hashe for all floor minton acids were performed at the Hartree-fock [19] level with a locally dense basis set 6-311++0(4, p.) The unavailability of PCM_sugges invariant nettice orbital in GAUSSLAN 98 has restricted us to explore PCM_SUGGEST in nuclear shielding calculations. A positive solvent effect indicates an increase in motion shielding. The model chemistry used for shielding calculation is BLYPP6-311+0 (d. p.) This

Bull. Chem. Soc. Ethiop. 2007, 21(1)

corresponds to the approximation method that makes use of Becke-Siyk 3-parameter density functional theory [13] with the Lev NarapPara correlation function [14]. The tripled, basis as a disk three sizes of S and P functions on heavy atoms and hydrogen, The tripled, basis as disk three sizes of S and P functions on heavy atoms and hydrogen, The tripled of the function of the property of the parameter of the property of the property

$$\Delta \sigma_{eir} = \sigma_{eol}(R_V) - \sigma_{eye}(R_V)$$

 $\Delta \sigma_{ind} = \sigma_{noe}(R_S) - \sigma_{var}(R_{eve})$

RESULTS AND DISCUSSION

In Table 1 the effect of solvent on four amino acids is shown. It can be seen that in solvents that have OH group and can form hydrogen bond shielding is decreased (water, methanol, and ethanol) except for thr (threonin) that has an OH and CH₂ group on C that could produce sterie and inductive inhibition for hydrogen bonding with carbonyl group.

Table 1A. The ¹⁴N NMR isotropic shielding in different solvents with optimized molecule in vaccum (norm).

	Isotropic shielding (ppm)							
Solvent	e	gly	ser	leu	thr			
Water	78.39	235.926	226.902	218.407	249,417			
DMSO	46.8	238.409	230.597	219,302	237,704			
Nitromethane	38.2	238.409	230.571	219,313	237.569			
Methanol	32.63	235.889	227.214	218.502	248.581			
Ethanol	24.55	235.869	227,374	218.552	248.121			
Acetone	20.7	238.367	230.447	219.362	236.957			
Dichloroethane	10.36	238.297	230.177	219,456	235.688			
Dichloromethane	8.93	238.278	230.091	219,483	235.299			
THE	7.58	238.254	229.981	219.516	234.811			
Aniline	6.89	238 238	229 907		234 494			

Table 1B. The ¹⁴N NMR anisotropic shielding in different solvents with optimized molecule in vaccum (ppm).

	Anisotropic shielding (ppm)							
Solvent	c	gly	ser	leu	the			
Water	78.39	51.689	55.094	63.909	60.597			
DMSO	46.8	43.702	48.335	38.939	51.643			
Nitromethane	38.2	49.137	48.333	38.858	51.639			
Methanol	32.63	51.339	54.517	62.206	60.118			
Ethanol	24.55	51.158	54.222	61.289	59.864			
Acetone	20.7	49.112	48,327	38.496	51.618			
Dichloroethane	10.36	49.093	48.315	37.775	51.567			
Dichloromethane	8.93	49.098	48.312	37.562	51,549			
THF	7.58	49.106	48.309	37.299	51.526			
Aniline	6.89	49.113	48,306	37.132	51.511			

Table 1C. The "N NMR η shielding in different solvents with optimized molecule in vaccum (ppm).

	η shielding (ppm)						
Solvent	· c	gly	ser	leu	the		
Water	78	-0.077	0.304	1.383	0.505		
	47	-0.252	0.281	2.013	0.531		
Nitromethane	38	-0.252	0.282	2.024	0.532		
Methanol	33	-0.097	0.291	1.427	0.517		
Ethanol	25	-0.108	0.284	1.451	0.523		
Acetone	21	-0.261	0.287	2.071	0.541		
Dichloroethano	10	-0.271	0.298	2.172	0.555		
Dichloromethane	8.9	-0.279	0.301	2.203	0.561		
THF	7.6	-0.283	0.306	2.243	0.565		
Aniline	6.0	-0.286	0.309	1 2 269	0.568		

Table 2A. The ¹⁸N NMR isotropic shielding in vaccum with optimized molecule in different solvents (nown).

Isotropic shielding (ppm)									
Solvent	c	gly	801	leu	thr				
Water	78.39	226.726	222.015	207.237					
DMSO	46.8	226.73	222.016	207.233	210.138				
Nitromethane	38.2	226.725	222.016	207.233	210.138				
Methanol	32.68	226.725	222,016	207.239	210.138				
Ethanol	24.55	226.725	222.016	207.238	210.138				
Acetone	20.7	226,725	222.016	207.237	210.138				
Dichloroethane	10.36	226.725	222.016	207.241	210.138				
Dichloromethane	8.93	226.725	222.016	207.236	210.138				
THE	7.58	226.725	222.016	207.237	210.138				

Table 2B. The ¹'N NMR anisotropic shielding in vaccum with optimized molecule in different solvents (ppm).

	Anisot	ropic shield	ing (ppm)		
Solvent	c	gly	ser	leu	thr
Water	78.39	39.612	44.123	43:131	36.008
DMSO	46.80	39.614	44.126	43.124	36.001
Nitromethane	38.20	39,614	44.125	43.128	36.004
Methanol	32.68	39.614	44.125	43.131	36.004
Ethanol	24.55	39,614	44.125	43.132	36.004
Acetone	20.70	39.614	44.125	43.131	36.004
Dichloroethane	10.36	39.614	44.125	43.132	36.004
Dichloromethane	8.93	39.614	44.125	43.132	36.004
THF	7.58	39.614	44.125	43.131	36.004
Anilline	6.89	39.614	44.125	43.131	36.004

In anisotropic effect this trend is inversed that means for solvents consist OH group greater shiften values observe. In solvent effect studies, it is more advisable to carry out shielding calculations in solution even with a fixed (gas-phase-optimized) solute geometry than to perform shielding computations in vacuo for a solute whose geometry is optimized in solution. This matter can be seen from Table 5 that the mean relaxation of solute geometry under the

influence of the solvent cannot be a unimbe state for investigation of solvent effect. The data in Table 4 indicates irregular variations concerning reliefly energy resus discretic constant or the contract of the contract

Table 3. Values of Ao dir and Ao ind (pom) calculated for 4 amino acids.

Δσ dir				Δσ ind				
gly	SCT	leu	the	gly	ser	leu	thr	
-2.058	-1.222	-1.484	21.669	3.50E-03	1.20E-03	0	0	
42.511	2.473	-0.585	9.956	0	1.90E-03	-3.60E-03	-2.00E-04	
0.425	2.446	-0.578	9.821	0	2.20E-03	-4.00E-03	0	
-2.095	-0.909	-1.388	20.833	0	2.20E-03	2.20E-03	0	
	-0.749	-1.338	20.371	0	2.20E-03	1.10E-03	0	
0.383	2.323	-0.529	9.2084	0	2.20E-03	0,00E+00	0	
0.313	2.053	-0.435	7.941	0	2.20E-03	3.20E-03	- 0	
0.294	1.968	-0.407	4.552	0	2.20E-03	-6.00E-04	0	
0.271	1.857	-0.374	7.062	0	2.20E-03	0.00E+00	0	
0.254	1.783	.0.353	6.745	0	2.20E-03	0.00E+00	0	

Table 4. Solvent effect on energy values (kl/mol) of four amino acids with respect to gas phase value.

Solvent	c	gly	ser	leu	the
Water	78.39	-1195.103	-2631.832	-1855.757	-2635.659
Draso	46.8	-1195.063	-2631.695	-1855.713	
Nitromethane	38.2	-1195.061	-2631.689	-1855.711	-2633.239
Methanoi	32.63	-1195.111	-2631,804	-1855.777	-2633.379
Ethanol	24.55	-1195.099	-2631.779	-1855.759	-2633.354
Acetone	20.7	-1195-063	-2631.697	-1855.721	-2633,246
Dichloroethane	10.36	-1195,058	-2631.687	-1855.712	-2633.232
Dichloromthane	8.93	-1195.069	-2631.713	-1855.731	-2633.258
THE	7.58	-1195.054	-2631.675	-1855.709	-2633.227
Anillin	6.89	-1195.027	-2631.623	-1855.667	
Cycloherane	2.023	-1195.076	-2496.231	-1855.762	-2633,279

CONCLUSIONS

The present work provides a bold assument of the reliability of the polarizable continuous model in describing the infinence of solvents on suckern agrantise inhibiting for animo selds. The approach used however does not take into account the consequence of specific solvine-solvent interceions. We can discuss the effect of variable solvent on animo socials and whenever special rescision must be done, (for example, synthesis or of slad of specific approach as the specific solvent interceions, the special solvent is considered to the special solvent in a surface and solvent in example, solvent in the contribution of the special solvent in the special solvent i

REFERENCES

- Manalo, M.; Cammi, R. J. Phys. Chem. 2000, A, 104, 9600.
- 2. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Zakrzewski, V.G.; Montgomery, J.A. Jr.; Stratmann, R.E.; Burant, J.C.; Dapprich, S.; Millam, J.M.: Daniels, A.D.: Kudin, K.N.: Strain, M.C.: Farkas, O.: Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R., Mensucci, B., Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G.A.; Ayala, P.Y.; Cui, Q.; Morokuma, K.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.: Foresman, J.B.; Cioslowski, J.; Ortiz, J.V.; Baboul, A.G.; Stefanov, B.B.; Liu, G.: Liashenko, A.: Piskorz, P.: Komaromi, I.: Gomperts, R.: Martin, R.L.: Fox, D.J.; Keith, T.: Al-Laham, M.A.: Peng, C.Y.: Nanayakkara, A.: Gonzalez, C.: Challacombe, M.: Gordon, M.: Replogle, E.S.: Pople, J.A. Gaussian 98, Revision A.7, Gaussian, Inc.: Pittsburgh PA; 1998.
- 3. Fazaeli, R; Monajjemi, M. J. Mol. Struct. (Theochem) 2002, 581, 51.
- Saenger, W. Priciples of Nucleic Acid Structure, Springer: New York; 1984.
- 5. Blackborn, G.M. Nucleic Acids in Chemistry and Biology, Oxford University Press: Oxford; 1996.
- Tomasi, J; Cammi, R. J. Chem. Phys. 2003, 118, 10712.
- Tomasi, J.; Cammi, R. Chem. Phys. Lett. 2001, 346, 251.
- Assfeld, X; Sordo, J.A. J. Mol. Struct. (Theochem) 1993, 106, 193. 9. Gao, J. in Reviews in Computational Chemistry, Vol. 7, Lipkowitz, K.B.; Boyd, D.B. (Eds.);
 - VCH: New York; 1996; p 119. Singh, U.C.; Kollman, P.A. J. Comput. Chem. 1986, 7, 718.
 - 11. Field, M.J. in Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications, Vol. 2, van Gunsteren, W.F.; Weiner, P.K.; Wilkinson, A.J. (Eds.); ESCOM: Leiden; 1993; p 82.
 - 12. Field, J.J.; Bash, P.A.; Karplus, M. J. Comp. Chem. 1990, 11, 700.
 - 13. Becke, A.D. J. Chem. Phys. 1993, 98, 5648.
 - 14. Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. 1998, B37, 785.