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Carbon nanotubes (CNTs) exhibit excellent mechanical, electrical and magnetic
properties as well as nanometer scale diameter and high aspect ratio, which make CNTs
an ideal reinforcing agent. In this paper, discussions on structure, properties, covalent
and noncovalent functionalization, and application of chemistry functionalized carbon
nanotubes are included.

Keywords Carbon nanotubes, covalent fictionalization, covalent chemistry of CNTs

Introduction

Carbon nanotubes (CNTs), in both the single-walled (SWCNT) and multi-walled
(MWCNT) forms, are widely considered to be the wonder materials of the 21st century
and bring new paradigms to diverse fields, including electronics (1), structural integrity (2),
biomedical engineering (3–5), tissue engineering (5), drug delivery (6), nanoinjectors (7),
neuroengineering (8), gene therapy (9) and biosensor technology (10). Several reviews of
CNTs regarding their methods of synthesis (11,12) and their superior mechanical, chem-
ical and electrical properties exist in the literature (11,13,14). In this article, we focus on
the attributes relevant for the practical application of CNTs in biomedicine. An example
of the utility of CNTs in biomedicine is their relatively large length-to-diameter aspect
ratio (which can exceed 106, with an average length of 1 mm and diameter about 1 nm)
with a very large surface area, which makes CNTs amenable for high sensitivity molec-
ular detection and recognition. Consequently, a large fraction of the CNT surface can be
modified with functional groups of various complexities, which would modulate its in vivo
and in vitro behavior. In spite of such attractive features, the toxicity of CNTs is a prime
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Review of Chemistry Principles for Carbon Nanotubes 139

concern, with several groups pointing to their similarity to asbestos fibers (15). CNT toxi-
city in both in vivo and in vitro studies has been attributed to various factors, for instance,
length, type of fictionalization, concentration, duration of exposure, method of exposure
and even the dispersant used to solubilization the nanotubes. Yet many studies suggest that
such attributes for CNT toxicity are unfounded. These inconsistencies seem to arise largely
due to differences in experimental protocol; whereas some points of view have been recon-
ciled, most aspects of CNT toxicity remain uncertain. This review aims to synthesize and
further analyze representative data on toxicity by first considering how CNTs are designed
for biomedical purposes, how this process itself can promote toxicity and the behaviors of
these CNTs when in clinical use, which all combine to explain the current toxicity profile
of CNTs. A fresh evaluation of these studies yields new insight into CNT toxicity, with
emphasis on issues such as cell specific tolerance, rates of toxic events, mechanism of cell
injury and organ-specific bio distribution. In addition, we hope this review will stimulate
further research into the fundamental aspects relevant for nanotube application, such as
intrinsic defects, methods of synthesis, and nature of the functional group, all of which
underlie biocompatibility issues and eventual widespread application.

Structure and Properties of Carbon Nanotubes

CNTs can be classified as SWCNTs and MWCNTs (Figure 1) (16). The structure of
an individual SWCNT can be regarded as a two-dimensional (2-D) graphene sheet cut

(b) (d)

(c)

(f)
(e)

(a)

Figure 1. Structure of single-walled (SWCNT) (a–d) and multi-walled (MWCNT) carbon nanotubes
(e,f). (a) Shows a schematic of an individual helical SWMT; (b) shows a cross-sectional view (TEM
image) of a bundle of SWCNTs [transverse view shown in (d)]. Each nanotube has a diameter of
≈ 1.4nm, and the tube-tube distance in the bundles is 0.315 nm; (c) shows the high-resolution TEM
micrograph of a 1.5 nm diameter SWCNT; (e) is the schematic of a MWCNT and (f) shows a high
resolution TEM image of an individual MWCNT. The distance between horizontal fringes (layers
of the tube) in (f) is 0.34 nm (close to the interlayer spacing in graphite) (color figure available
online).
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140 O. Moradi et al.

Figure 2. Structure of the single-walled carbon nanotube.

at various angles with respect to the hexagonal lattice that has been wrapped up into a
seamless cylinder, which is capped by fullerene hemispheres at both ends (Figure 2) (17).
MWCNTs are composed of concentric cylinders placed around a common central hol-
low, with spacing between the layers close to that of the interlayer distance in graphite
(≈0.34 nm).

CNTs can be metallic or semiconducting, depending on their diameter and chirality.
“Armchair” tubes have energy bands that cross the Fermi level and are therefore metallic.
“Chiral” and “zigzag” nanotubes are expected to be metallic when n-m = 3l (where l is an
integer) or semiconducting with an energy gap of order about 1 eV when n-m�=3l. n and m
are integers of the vector equation R = na1+ma2, where a1 and a2 are the unit cell vectors
of a graphen sheet. Figure 3 shows the electronic density of states (DOS) of a metallic and
a semiconducting SWCNT close to Fermi level (18). For the metallic SWCNT, there is a
finite value of the DOS at the Fermi level. On the other hand, a complete gap between the
spikes close to Fermi level can be found in the semiconducting SWCNT. The energy sep-
aration between each pair of peaks represents the band gap of SWCNTs. By using simple
tight-binding (STB) theory, in which the electronic band structure is assumed to arise from
a pure p-orbital at each conjugated carbon atom, the low-energy band gap transitions take
a simple analytical form: S11 = 2aβ/d, S22 = 4aβ/d, M11 = 6aβ/d, where a is the carbon-
carbon bond length (0.142 nm), β is the transfer or resonance integral between the p- and
π -orbitals (β = 2.9 eV) and d is the diameter (nm) of the particular semiconducting or
metallic SWCNT. S11 and S22 are the first and second pairs of singularities in the DOS of

Figure 3. Interband transition of arc-produced SWCNTs near Fermi level.
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Review of Chemistry Principles for Carbon Nanotubes 141

semiconducting SWCNTs, respectively. M11 corresponds to the transition between the first
pair of singularities in the DOS of metallic SWCNTs (17–21). The characteristic interband
electronic transitions provide the spectroscopic signature of the SWCNTs in the near-IR
(NIR) VIS spectral region (Figure 3).

As most SWCNT preparations are a mixture of metallic and semiconducting
SWCNTs, the interband transitions arising from both species are visible. Besides these
unique electronic properties, CNTs exhibit excellent mechanical and thermal properties.
CNTs exhibit the highest Young’s modulus and tensile strength of all known materials.
The Young’s modulus for an individual (10, 10) SWCNT is ≈0.64 TPa (20) and up to
1.47 TPa for a 15-SWCNT rope (21), which is much higher than that of conventional car-
bon fibers with values in the range of 200–800 GP (22). Young’s modulus of MWCNTs
is reported to be 1–2 TP (23), and the bending strength of individual MWCNTs reaches
28.5 GP (24). The measured thermal conductivity of an individual MWCNT (about 3000
W/m2K) is larger than that of natural diamond and the basal plane of graphite (both 2000
W/m2K).

Chemistry of Carbon Nanotubes

The covalent chemistry of CNTs may be classified into two categories (25). The first
involves functionalization at the ends or at defect sites of the CNTs, where there exists
the possibility to add to the carbon nanotube at an abounded site without attacking the
π -system; this type of chemistry usually involves reaction at a previously introduced car-
boxylic acid group. These carboxylic acid groups are usually generated by nitric acid
treatment and can be used as precursors in functionalizations such as amidation and esteri-
fication (25–27). The second type of covalent chemistry involves sidewall functionalization
in which the carbon- carbon double bonds on the sidewall of CNTs react. Such reactions
include fluorination (28), carbine (27–30) or nitrene addition, Birch (25,31), 1, 3-dipolar
addition (32) and reactions with radical (33–35).

Covalent Functionalization

Oxidation of Carbon Nanotubes

Oxidative processes were among the first chemical reactions to be applied to CNTs (33),
mainly for the purposes of purification and catalyst removal. Heating of CNTs in air at
700◦C for 10 minutes leads to the opening of the hemispherical end caps of CNTs and
demonstrates the different reactivates of the bonds in CNTs (end cap vs. sidewall). The
controlled annealing of SWCNTs in O2 is an effective method of purification (35–37).
Other gas-phase oxidation methods, including the use of’ H2S + O2 (34) and O3 (38),
have been reported. Liquid-phase oxidation processes, such as treatment with HNO3 (38–
40), HNO3+H2SO4 (26,40), H2SO4 +KMnO4 (41) and KMnO4 (40), have been widely
used in the processing of CNTs. These oxidants can remove the end caps of CNTs and
introduce functional groups, such as COOH, -OH and -C=O, at the dangling bonds (40,42).
Among these functionalities, the carboxylic acid group is of great importance, as it has
been employed in a large number of CNT functionalization reactions. After nitric acid
treatment of SWCNTs, the concentration of carboxylic acid groups is about 1–3wt% based
on acid-base titration (43).
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142 O. Moradi et al.

End Functionalization

As the carbon atoms at the ends have larger curvature than carbon atoms in the side-
wall, they can be oxidized more easily than other carbon atoms. The end (and defect)
functionalization of the CNTs has important ramifications:

1. End functionalization does not destroy the extended π - network, thereby retaining the
unaltered electronic and mechanical properties of the CNTs.

2. End functionalization can dramatically change the chemical and physical properties
of CNTs, enhance their solubility and facilitate the manipulation of CNTs (44–46)
(Figure 4).

The functionalization methodology was based on the amidation of SWCNTs with a
long-chain amine [octadecylamine (ODA)]. Acid-treated SWCNTs were first reacted
with thionyl chloride to form an acyl chloride intermediate (26). Then the acyl chlo-
ride intermediate was heated with ODA at 90–100◦C for 96 hours. The resulting amide
form of SWCNTs was soluble in many common organic solvents, including chloroform,
dichloromethane, aromatic solvents (e.g., benzene, toluene, chlorobenzene) and CS2. The
solubility of the s-SWCNTs in 1,2-dichlorobenzene and CS2 is higher than 1 mg/mL.
This important finding not only provides a new method for obtaining well-characterized
highly purified SWCNT materials by separating soluble SWCNTs from insoluble impu-
rities (46,47) but also opens the door for the study of SWCNT chemistry in the organic
solution phase. Various solution spectroscopies can be applied to characterize the dissolved
SWCNTs (27,47,48).

Based on the same method, other amines such as 4- dodecyl–aniline (48); glucosamine
(50); and amine-rich polymers, dendra and proteins (50–52) have been used to functional-
ize SWCNTs. The methodology of these reactions is based on amidation via acyl chloride
intermediate or the 1-ethyl-3(3-dimethylaminopropyl) cabodiimide (EDAC)- or 1,3-
dicyclohexylcarbodiimine (DCC)-activated reaction. The poly(propionylethy1enimine-co-
ethylenimine (PPEI-EI) (53) and bovine serum albumin (BSA)-functionalized SWCNTs
(54) are quite soluble in water as well as organic solvents. Sonication during the reaction
can promote EDAC-activated amidation (53). The ring closure of SWCNTs by reaction
between the -COOH and -OH at their ends has also been reported (55).

Figure 4. Schematic representation of end functionalization of SWCNTs.
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Sidewall Functionalization

As the carbon bonds in the sidewall of the CNTs are of lower reactivity than the bonds
in fullerenes, reagents with high chemical reactivity have been involved in the sidewall
functionalization of CNTs. Such reagents include carbine (25,27,29), fluorine (28), aryl
radical (33,34,55) and azomethine ylides (32). Several methods for the metal reduction
of SWCNTs have also been reported (25,31), and SWCNTs with alkyl substituent’s were
obtained by treating the fluorinated SWCNTs with nucleophilic reagents such as alkyl-
lithium and alkyl magnesium bromides (56–59). Once the sidewall functionalization of
SWCNTs had been accomplished, the properties of the SWCNTs change dramatically. The
carbon atoms on the sidewalls of SWCNTs that react with functional groups are converted
from sp2 into sp3 hybridization. The saturation of the K-network leads to a significant
change in the electronic band structure of SWCNTs that can be monitored by optical
spectroscopy (27,29,30). The presence of sp3-hybridized carbon atoms in the SWCNT
framework can be detected by Raman spectroscopy (28,30,33,57) and is reflected by an
increase in the relative intensity of the disorder mode of the SWCNTs after sidewall func-
tionalization. The solubility of sidewall-functionalized SWCNTs in organic solvents or
water is usually improved by the addition of different functional groups.

Noncovalent Functionalization

The advantage of noncovalent functionalization is that it does not destroy the conjuga-
tion in the CNTs. One strategy for noncovalent functionalization is based on the usage
of an amphiphilic molecule or polymer to interact with CNTs via its hydrophobic pm,
whereas the hydrophilic part of this molecule can enhance the solubility of CNTs or
react with other molecules. Another method is the ionic interaction of SWCNTs, which
leads to the formation of acid-base salts or charge-transfer complexes. For example, the
acid form of SWCNTs was heated with melted octadecylamine to form an SWCNT
carboxylate zwitterion (60). Such a form of SWCNTs is soluble (>0.5 mg/mL) in tetrahy-
drofuran and 1,2-dichlorobenzene. Generally, a 0.1 mg/mL solution is stable for more
than 10 days and is visually nonscattering. The majority of the SWCNT ropes were
exfoliated into small ropes (2–5 nm in diameter) and individual SWCNTs with length
of several micrometers during the dissolution process. Noncovalent functionalization of
SWCNTs has been achieved by using small molecules such as l-pyrenebutanoic acid suc-
cinimidyl ester (60). This amphiphilic molecule can attach to the surface of SWCNTs
by π -π interaction with the pyrene moiety, while the hydrophilic ester of this molecule
enhances the solubility of SWCNTs. This approach has been used in protein immobiliza-
tion, including the study of ferritin, streptavidin and biotin-PEO-amine. These bioactive
molecules have been attached to the surface of SWCNTs via a nucleophilic substitu-
tion of N-hydroxysuccinimide by using the amine group on the proteins to form an
amide. Molecules of high molecular weight can wrap themselves around the surfaces
of SWCNTs. Polymers, including polyvinyl pyrrolidone (PVP) and polystyrene sul-
fonate (PSS), poly (phenylacetylene) (PPA) (61), poly(metaphenylenevinylene) (PmPV)
(62), poly] (arjleneethyny1enes (PPE) (63), poly–anisidine (POAS) (64), amylose (65),
amphiphilic copolymer poly(styrene)-block-poly (acry1ic acid) (66) and natural polymer
(65), have been used to wrap or encapsulate CNTs. The interaction between the CNTs
and the polymer hosts usually originates from the van der Waals interaction between the
surface of the CNTs and the hydrophobic part of the host polymer. The mechanism of
these polymer-wrapping methods depends on both the interaction between SWCNTs and
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144 O. Moradi et al.

polymers, and the structure of the polymers. A thermodynamically driven model for wrap-
ping SWCNTs has been suggested, wherein the polymer disrupted both the hydrophobic
interface with water and nanotube-nanotube interactions in the CNT (66) aggregates. AFM
investigation revealed that the individual PVP-SWCNT displayed a uniform diameter along
its length, which indicates that the polymers were uniformly wrapped along the surface of
the SWCNTs rather than being randomly attached. A helical wrapping model was used to
explain the solubilization of SWCNTs at the molecular level. In another case, a straight,
rigid polymer, poly (aryleneethyny1ene) (PPE), has been used to interact with SWCNT
(63–67). Because the polymer is short and rigid, it attached to the surface of SWCNTs in
a non wrapping form parallel to the nanotube axis (Figures 5–6).

Figure 5. Schematic representation of sidewall functionalization of SWCNTs.

Figure 6. Schematic representation of dichlorocarbene addition to soluble SWCNTs.
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Application of Chemistry Functionalized Carbon Nanotubes

The functionalized CNTs can have higher solubility or differing molecular affinity or elec-
tronic response, and this allows for more effective use of their outstanding electronic and
mechanical properties. It is clear that CNTs will find applications in electronics, sensors,
composite materials, biology and medicine. The strength and high aspect ratio of CNTs are
particularly valuable in the design of probe tips for scanning probe microscopy (68–71),
electrochemistry (71) and biological analysis (72,73). Using carbodiimide chemistry, car-
boxyl groups at the tip ends coupled with different amines to form amide-linked groups.
By employing the characteristic properties of these amide groups, this chemically modi-
fied MWCNT probe could be used for titrating acid and base groups, to image patterned
samples based on molecular interactions and to measure the binding force between sin-
gle protein-ligand pairs. Individual semiconducting SWCNT-based chemical sensors are
reliable for the detection of small amounts of gases such as NH3 and NO2 (74). The mech-
anism of this sensor action is based on charge transfer between the SWCNTs and NO2 or
NH3. Exposure to the gases affected the electronic properties of the SWCNTs and led to
a change in the conductivity. It was observed that the conductance of the SWCNT sample
dramatically increased in NO2 and decreased in NH3.

Recently, there has been intense interest in exploring the novel properties of CNTs,
especially SWCNTs for biological applications. The 1-D structure of SWCNTs makes
them an ideal candidate for the development of a new generation of biodevices. Because
SWCNTs are molecular wires with every carbon atom exposed on the surface, SWCNTs
are promising candidates for the development of extremely sensitive biosensors. Because
of their small dimensions, SWCNTs can be easily introduced into cells with little or no dis-
turbance of the cell function. In addition, the outstanding electronic properties of SWCNTs
will allow biological events to be addressed electronically. The progress in understanding
the interactions between CNTs and biomolecules has stimulated extensive research on the
fabrication of bionanodevices and especially biosensors. SWCNT devices have shown high
sensitivity in the detection of redox enzyme (75–77), DNA (78) and proteins (79).

An alternative approach to tethering biological molecules to SWCNTs in a con-
trolled manner is covalent functionalization. Covalent functionalization provides better
integrity, stability and reproducibility of the fabricated devices. Typically, covalent binding
of proteins and enzymes utilizes the diimide-activated amidation of carboxylic acid-
functionalized carbon nanotubes as schematically illustrated in Figure 7 (paths a and b)
(54,80–82). For covalent attachment of DNA, amine-terminated SWCNTs are cross-linked
with succinimidyl 4-(N-maleimidomethy1) cyclohexane-1-carboxylate (SMCC) to pro-
duce maleimide groups further reacted with thiol-terminated DNA (path c) (83) (Figure 7).
A method for functionalization of SWCNTs with N-protected amino acids based on the
1, 3-dipolar cyclo addition reaction to the external walls of SWCNTs has also been reported
(84–105) (Figure 8).

Conclusion

The chemistry of CNTs has made enormous strides, and it is clear that this subject
will drive the applications of carbon nanotubes. In order to further refine the chemically
functionalized CNTs, it is important to begin the chemistry with high quality materials.
Functionalization of individual CNT, and particularly CNTs of defined length, diameter
and chirality, is the next step that will lead to the control of CNT-based materials and
devices at the molecular level.
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146 O. Moradi et al.

Figure 7. Schematic representation of functionalized SWCNTs in biological application.

Figure 8. Oxidation of CNTs and derivatization reaction with amines or alcohols.
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